Мобильный фрод и методы борьбы с ним

fraud

11 августа в Москве прошел TargetSummit Meetup: Mobile Fraud, на котором Николай Стерняев (Analytics Team Lead, Mobio) рассказал про основные типы мобильного фрода и методы борьбы с ними. Ниже мы хотим поделиться основными мыслями из доклада.

Мисслиды

Мислиды — обман пользователя с помощью креативов. Например, на примере ниже пользователя вводят в заблуждение, что он сможет с помощью браузера смотреть аниме без интернета, что не является правдой. Как итог: много установок и неудовлетворенный пользователь, который не получил желаемое из рекламы.

Пример мисслида

Для борьбы с мисслидами достаточно самостоятельно контролировать все креативы партнера или использовать сервисы для мониторинга рекламы: AdMobiSpy или Publer.

Мотивированный трафик

Мотивированный трафик или «инсент» — это целевые действия, будь то скачивание, регистрация или покупка, за которое пользователь получает какой-то бонус. Такие пользователи пользователи не задерживаются в приложении и используются для накрутки статистики или попадания в топ магазинов приложений.

Appbonus

Компаний, которые позволяют покупать мотивированные установки, огромное множество: Appbonus, Appcent, PayForInstall, и многие другие.

Для выявления мотивированного трафика помогает выгрузка статистики и ее дальнейший анализ. Click Rate у мотивированного трафика всегда выше, поэтому обычно его разбавляют, чтобы общая картина казалась нормальной. В этом случае помогает анализ Retention: если на 2,3,4 или какой-то другой день все пользователи пришедшие от партнера безвозвратно уходят, значит с большой вероятностью это мотивированный трафик.

Боты

Наиболее сложный для отслеживания тип фрода — боты. Это программы, скрипты или вьетнамские умельцы, которые давно умеют имитировать всё что угодно: установки приложения, прохождение уровней и даже совершения покупок.

Отлавливать их можно с помощью собственных или готовых решений, типа Forensiq, ClearFlow или Pixalate.

Полная презентация с выступления:

Продавать рекламу на платформе Cheetah Mobile Ad Platform будет агентство Mobio

Агентство мобильной рекламы Mobio стало селлером рекламы на платформе Cheetah Mobile Ad Platform.

Платформа позволяет размещать рекламу в приложениях Cheetah Mobile, таких как Clean Master, CM Security, CM Browser, Battery Doctor, PhotoGrid и других, с общим охватом более 635 млн активных пользователей в месяц и более 1 миллиарда показов рекламы в день.

Основную ставку платформа делает на нативную рекламу, которая органично вписывается в интерфейс. Рекламный баннер показывается пользователю в разное время, не прерывая его взаимодействия с приложением, например, во время зарядки телефона, очистки девайса, или открытия приложений социальных сетей или игр.
Такие форматы подходят как для брендов, так и для performance рекламодателей. Для приложений предусмотрен специальный формат App Install, а также возможность ретаргетинга. Также есть возможность размещения видео-рекламы.

Скриншот 2016-03-21 13.14.11

Агентство Mobio тестирует площадку уже полгода и провело за это время десятки кампаний, которые показывают высокую степень вовлеченности пользователей и низкую стоимость инсталла. Основные модели работы с платформой — CPC и CPM, но при работе с приложениями Mobio всегда работает с оплатой за установку — CPI.

Площадка обладает существенным охватом в России — более 25 млн уникальных пользователей в месяц. Также большой охват у площадки в других развивающихся странах, таких как Индия, Индонезия, Бразилия, Таиланд, а также в США.

Cheetah Mobile — это разработчик мобильных приложений из Китая, по кол-ву загрузок уступающий только Facebook и Google (согласно отчету App Annie от января 2016 года). Основные продукты Cheetah Mobile доступны на трёх основных платформах — Windows, iOS и Андроид. Мобильные продукты включают Clean Master, Battery Doctor, CM Security, PhotoGrid и CM Browser, а продукты для ПК — Duba Anti-virus, Cheetah Browser и Clean Master. Основной офис и главный исследовательский центр Cheetah Mobile находится в Пекине, КНР, его научно-исследовательские филиалы есть в городах Чжухай, Чжэнчжоу, Гуанчжоу, Сучжоу и Ханчжоу. Международный офис в настоящее время открыт в Сан-Франциско, США. 70% сотрудников Cheetah Mobile являются научно-исследовательским персоналом.

Mobio — агентство мобильной рекламы и продвижения приложений из России, основанное в 2013 году. Mobio занимается продвижением мобильных приложений как в России, так и в других странах. Среди клиентов агентства — крупные разработчики мобильных приложений и игр со всего мира, такие как Alibaba, Cheetah Mobile, Gameloft, Aviasales, Delivery Club и другие, а также крупные российские бренды.

Когортный анализ. Метрики продукта vs метрики роста.

Когортный анализ – это очень эффективный инструмент продуктовой и маркетинговой аналитики. К сожалению, о нем немногие знают, а те кто знают, крайне редко его используют.

Из статьи вы узнаете:

  • в чем состоит суть когортного анализа
  • чем метрики роста отличаются от метрик продукта
  • почему попытки построить продуктовую аналитику, основываясь на метриках роста, заканчиваются плачевно
  • как я использую когортный анализ в маркетинге и в продуктовой аналитике
  • за какими метриками продукта необходимо следить и почему

cohort_analysys

 

Когортный анализ в маркетинге и продуктовой аналитике

Давайте попробуем сравнить два автомобиля и узнать, какой из них лучше?

  • Первый проехал 2000 км, а второй 12000 км
  • Первым автомобилем сейчас пользуются 5 раз в неделю, а вторым 4 раза в неделю.
  • Первый автомобиль в последний месяц в среднем проезжал 10км, к второй 20км.
  • В данный конкретный момент первый автомобиль едет на скорости 100 км/ч, а второй автомобиль едет на срокости 70км/ч

К сожалению, на основе имеющейся информации невозможно ответить на поставленный вопрос. Но почему-то как только доходит до интернет проектов или мобильных приложений, то все начинают следить за метриками вроде DAU, MAU, доход, общее количество регистраций и пытаться на основе них делать выводы о продукте, влиянии изменений и эффективности маркетинговых активностей.

Перечисленные выше метрики являются метриками роста. За ними полезно следить для общего понимания ситуации, но применительно к работе над продуктом подобные метрики бесполезны, так как на их основе невозможно принимать продуктовые решения, ровно как и оценивать влияние продуктовых изменений.

Когда вы работаете над продуктом, то вас должны интересовать, в первую очередь, его “объем” и “плотность”, а не его “масса”. “Масса” просто констатирует факт, не объясняя, откуда она взялась и как на нее повлиять. Вы же должны стремиться к тому, чтобы разложить ключевые метрики на составляющие, декомпозировать их, определяя рычаги воздействия на них. Основной задачей при работе над продуктом является определение рычагов воздействия и поиск способов влияния на них.

В этой деятельности вам не обойтись без аналитики. Аналитика является обратной связью на ваши действия, вашими глазами в продуктовом мире. Сначала аналитика позволяет вам понять, где вы находитесь, что за продукт вы сделали, как им пользуются в реальном мире, а затем позволяет увидеть то, как ваши действия, вносимые изменения влияют на ваш продукт. Аналитикой на картинке ниже я называю этапы: Measure, Data, Learn.

analytics1

 

Одним из наиболее эффективных инструментов продуктовой аналитики являетсякогортный анализ. Именно о нем сегодня пойдет речь.

 

Почему метрики роста бессмысленны для аналитики продукта

Давайте рассмотрим следующую модельную ситуацию. Есть продукт, который обладает следующими характеристикам:

  • стоимость привлечения пользователя составляет 1$
  • средний доход с одного пользователя составляет 2$ в течение следующих 4 месяцев
  • 30% новых пользователей продолжают пользоваться продуктом спустя месяц (далее доля постепенно снижается до 15%)
  • Команда продвижения привлечет 10 тыс. новых пользователей в первый месяц после запуска, 15 тыс. во второй, 20 тыс. в третий и так далее
  • Продакт менеджер, который отвечает за развитие продукта, вносит в него  изменения каждый месяц. Изменения неудачные, поэтому после каждого из изменений доход с пользователя падает на 0,1$, а доля пользователей, продолжающих использовать продукт падает на 2%.

В компании, где разрабатывается этот продукт, принято следить за месячной аудиторией (MAU или Monthly Active Users) и прибылью каждого из проектов. На основе этих метрик выставляются kpi и оцениваются успехи команды, работающей над продуктом.

Следя за выбранными метриками, спустя первые 9 месяцев  руководство было очень довольно результатами нового продукта, в том числе и успехами продакт менеджера. Но вспомните – наш продакт менеджер каждый месяц портит продукт! При этом метрики роста уверенно идут вверх.

13

 

Ниже приведены те же самые графики, но уже за 16 месяцев. На этих графиках мы, наконец, видим первые признаки неудачных изменений продукта. Но лишь спустя 12 месяцев!

Дело в том, что на метрики роста влияют две составляющие: продукт и продвижение. Следя за метриками роста, вы не можете просто отделить эти два фактора. Именно по этой причине метрики роста совершенно не подходят для продуктовой аналитики.

При правильно построенной аналитике мы бы увидели неудачное влияние обновлений продукта еще в первые недели / месяцы.

21

 

Суть когортного анализа

В каждый конкретный день аудитория вашего продукта представляют из себя смесь тех, кто начал использовать ваш сервис сегодня, вчера, месяц назад и так далее. Следить за этой неоднородной массой и пытаться делать выводы – крайне неблагодарное занятие.

Идея когортного анализа состоит в том, чтобы резделить пользоватей на группы по определенным признакам, и отслеживать поведение этих групп во времени.

Обычно группы пользователей (когорты) выделяют на основе недели (месяца), когда пользователи пришли в приложение. Выделив такие группы пользователей (когорты), вы следите за ними в течение времени и измеряете ключевые метрики для каждой отдельной когорты. Таким образом, сравнивая показатели мартовской и майской когорт пользователей, вы можете объективно сравнивать соответствующие этим периодам времени версии продукта.

Для более глубокой аналитики выделенные когорты необходимо дополнительно сегментировать на основе источника трафика, платформы, страны и других факторов, которые имеют смысл в вашем конкретном продукте.

Скорее всего, значения ваших ключевых метрик будут отличаться для разных сегментов, ровно как и разные продуктовые изменения будут по-разному влиять на разные сегменты пользователей.

 

Ключевые метрики продукта — LTV и CAC

Две ключевые метрики, которые в конечном итоге определяют финансовую успешность вашего продукта – это LTV (Life Time Value) и CAC (Customer Acquisition Cost).

LTV – деньги, которые средний пользователь тратит в вашем мобильном приложении за все время его использования. CAC – ваши затраты на привлечение среднего пользователя.

Почему эти две метрики так важны для вашего продукта и как они влияют на ваши бизнес показатели вы можете прочитать в материале “Аналитика SaaS. Критерии жизнеспособности” и  в материале “Убийца стартапов: стоимость привлечения клиентов” или посмотреть здесь. В рамках же этой статьи важность этих метрик будет принята по умолчанию, а более подробно будет освещены способы работы с этими метриками.

Я не буду подробно останавливаться на вопросе измерения и работы с CAC, так как это не ключевая компетенция классического продакт менеджера. Намного больший интерес представляет LTV – это как раз ключевая компетенция любого ответственного за продукт.

LTV – это ключевая метрика, отражающая ценность (пользу) вашего продукта для ваших пользователей и клиентов. Именно эта метрика должна стоять во главе угла при работе над продуктом.

LTV – замечательная метрика, но у нее есть один минус – она высокоуровневая. Чтобы понимать, как на нее воздействовать, вам необходимо ее декомпозировать на более простые и приземленные на продукт метрики.

 

Декомпозиция LTV на метрики продукта

Обычно метрики привязываются к ключевым точкам жизненного цикла пользователя в приложении. Тем самым мы создаем возможность отслеживать успешность продвижения пользователей в приложении и находить узкие места, требующие нашего внимания.

Я обычно отслеживаю путь пользователя в продукте с точки зрения его вовлеченности и монетизации.

Вовлеченность описывается следующими этапами в жизненном цикле пользователя:

  1. активация в приложении
  2. залипание в приложении (или активность использования)
  3. долгосрочный retention (сколько пользователей продолжают использовать продукт спустя месяц, два месяца и так далее после регистрации)

Монетизация же описывается следующей последовательностью этапов жизненного цикла пользователя:

  1. активация в приложении
  2. увидел продающий экран
  3. совершил 1 покупку
  4. совершил 2 покупку

Ниже я привел метрики, соответствующие каждому из этапов жизненного цикла пользователя в продукте (метрики могут отличаться для разных продуктов):

  • Активация в приложении (% тех, кто прошел туториал или совершил ключевое целевое действие в приложении, например, зарегистрировался и добавил первых друзей)
  • Залипание в приложении (% пользователей, который дошли до N уровня или, например, добавили N друзей: число N определяется экспериментальным путем)
  • Пользователь увидел предложение о покупке (% пользователей, которые увидели предложение о покупке)
  • Пользователь совершил первую покупку (% покупающих что-либо в приложении, средняя сумма первой покупки)
  • Пользователь совершил повторную покупку (% совершивших повторную покупку, средняя сумма повторной покупки, среднее количество повторных покупок)
  • Retention (% пользователей, которые используют приложение спустя месяц/два/три/четыре после регистрации)

Все этим метрики влияют в конечном итоге на LTV. В каждом из продуктов могут быть свои особенности, но для большинства подобные базовые этапы/метрики подойдут.

 

Метрики продукта и как они влияют на LTV

Давайте подробнее рассмотрим описанные выше метрики продукта и то, как они влияют на LTV, на примере абстрактной игры.

 

Активация в приложении

В любой игре пользователя сначала обучают, проводя его через туториал. Те, кто не прошли туториал, скорее всего, не будут дальше играть и тем более платить. Именно поэтому для нас критично отслеживать долю пользователей, успешно прошедших этот этап.

Также полезно отслеживать долю тех, кто смог выполнить ряд целевых действий по окончании туториала (то есть обучился и теперь может самостоятельно играть). Такая метрика будет отражать насколько качественно спроектирован процесс обучения.

 

Пользователь “залип” в приложении

Пользователь, скорее всего, не будет платить, если он не увлекся игрой. Именно поэтому нам надо отслеживать долю тех, кто залип в приложении. С этой целью мы измеряем долю тех, кто прошел до N уровня или тех, кто заходил в приложении более 5 раз в течение недели с момента установки.

Обычно метрику для факта залипания определяют опытным путем. В этой статьеесть примеры подобных метрик для ряда популярных сервисов.

 

Пользователь увидел предложение о покупке, сделал первую покупку

Одной из наших целей является получение дохода, поэтому нам надо стимулировать первую покупку в приложении. Но покупка совершается с определенного экрана нашего приложения (например, с экрана магазина), поэтому необходимо отслеживать долю пользователей, которые увидели этот экран.

Если экран о продаже видят 10% приходящих пользователей, то это автоматически ограничивает сверху долю пользователей, которые могут сделать первую покупку в нашей игре.

 

Повторные покупки

Первая покупка – это хорошо, но финансово успешные продукты обычно отличаются высокой долей повторных покупок. Часто первая покупка – это определенный кредит доверия пользователя приложению – если он удовлетворен результатом и полученной пользой, то, скорее всего, он совершит и повторную покупку. Поэтому еще одной важной метрикой становится, доля пользователей, совершающих повторные покупки, а также среднее количество повторных покупок.

 

Retention

Для того, чтобы пользователи имели шанс совершить несколько покупок – они должны продолжать играть в нашу игру в течение длительного времени, а не бросать ее спустя день. Для отслеживания этого явления мы будем измерять retention.

 

Построение продуктовой аналитики и пример использования когортного анализа

Самым простым в реализации вариантом построения аналитики продукта будет создание воронок на каждое из описанных выше событий. В большинстве случаев у вас получатся воронка монетизации и воронка вовлеченности пользователей.

Далее необходимо будет сравнивать показатели вашего продукта для когорт пользователей, сформированных на основе недели, когда они пришли в приложение. Для такой аналитики идеально подходят инструменты Mixpanel  и Localytics.

funnel

Я здесь рассмотрю более сложный, но и более продуктивный подход – использование когортного анализа для продуктовой аналитики. Использование когортного анализа углубит ваше понимание продукта и того, как ваши пользователи используют его во времени.

Будем формировать когорты пользователей на основе недели, когда они пришли в приложение. Для простоты в примере рассмотрены только следующие метрики: CAC, LTV, Ratention, % совершивших первую покупку, % совершивших повторную покупку. Также для простоты когорты не сегментировались ни по каким дополнительным признакам.

 

Приступим. Ниже приведена таблица когортного анализа рассматриваемого продукта (можете считать, что это игра или туристическое приложение). Ознакомьтесь с таблицей.

В первую неделю в первую версию нашего приложения пришло 3000 пользователей. На конец “0 недели” 25% из них прошли туториал, но еще никто не заплатил. К концу 1 недели еще 5% прошли туториал  (то есть всего уже 30%), при этом 1,2% совершили первую покупку. К концу 2 недели туториал прошли 34% из рассматриваемой когорты, а первую покупку совершили 1,4%.

Спустя неделю мы выпустили новую версию приложения, где изменили туториал. Как мы видим из таблицы когортного анализа – это сработало! К концу 4 недели уже 47% прошли туториал (ранее лишь 34%). Расширение воронки монетизации на уровне туториала увеличило и долю тех, кто совершил покупку. К сожалению, наши пользователи не совершают повторные покупки, что не позволяет выйти на операционную безубыточность продукта, даже несмотря на то, что команда продвижения смогла существенно снизить CAC (пусть и сократив приток новых пользователей). Тратим на привлечение мы 0,8$, а зарабатываем лишь 0,5$ со среднего пользователя спустя 8 недель.

В третьей версии приложения мы доработали туториал и добавили новые покупки в приложение, увеличив разнообразие. Это позволило нам увеличить долю повторных покупок и сравнять LTV с CAC.

cohort_analysys-1024x421

Примерно так когортный анализ позволяет нам понимать свой продукт, а также то, какие улучшения работают, а какие нет.

Основные идеи статьи

  • метрики роста не подходят для построения аналитики продукта, так как на них влияет не только продукт, но и маркетинг/продвижение
  • две ключевые метрики продукта – LTV и CAC
  • LTV – высокоуровневая метрика, поэтому ее следует декомпозировать на метрики продукта, привязанные к ключевым этапам жизненного цикла пользователя в приложении
  • суть когортного анализа состоит в том, чтобы отслеживать ключевые метрики каждой отдельной когорты во времени
  • когортный анализ позволяет объективно сравнивать разные версии продукта и оценивать влияние изменений на продукт

Источник статьи: http://gopractice.ru/cohort_analysis/

Самое крутое в России мероприятие по разработке и маркетингу мобильных игр теперь в Москве!

Moscow Nights 15

13 и 14 октября в Москве пройдёт Moscow Nights ’15, одна из самых заметных конференций о разработке и продвижении мобильных и социальных игр.

Читать далее Самое крутое в России мероприятие по разработке и маркетингу мобильных игр теперь в Москве!

Читайте отчёт о поездке Mobio на China Joy на Apptractor.ru (+фото, видео)

Читайте отчёт о поездке Mobio на China Joy на Apptractor.ru (+фото, видео)

Apptractor.ru, одно из ведущих русскоязычных интернет-изданий, освещающих мобайл в общем и мобильную разработку в частности, опубликовал наши путевые заметки, которые мы вели в ходе посещения китайской China Joy, глобальной выставки и конференции, посвящённой цифровым развлечениям. Для нас поездка была интересной, познавательной и полезной. Надеемся, наш отчёт о ней будет таким же для вас.

Ссылка: Путевые заметки: Mobio на ChinaJoy 2015

Статья Алексея Писаревского на Barsag.com

Правила реджектов в CPI

Наш CEO Алексей Писаревский написал колонку «Правила реджектов в CPI» для ресурса Barsag.com. В материале Алексей рассматривает закономерности и причины, по которым рекламодатели могут отказаться оплачивать полученный трафик, а также сравнивает китайских и российских рекламодателей, которые доминируют на RU-рынке.

Читайте: «Правила реджектов в CPI».

Facebook представляет Hello, альтернативный номеронабиратель для Android

Пульс мобайла - Facebook представляет Hello, альтернативный номеронабиратель для Android

Hello – очередной ход Facebook на пути к доминирующему положению в мобайле. Уже сейчас, если верить данным сервиса Homescreen.is, 4 из 20 приложений, чьи иконки пользователи размещают на домашних экранах, имеют непосредственное отношение к Facebook. Но Hello – не приложение, чью иконку можно вывести для вызова, а интегрируемый в систему продукт, заменяющий собой стандартный номеронабиратель. Пока – только для смартфонов под управлением Android.

Читать далее Facebook представляет Hello, альтернативный номеронабиратель для Android

Foursquare объявляет о скором запуске рекламной платформы Pinpoint, использующей геоданные сервиса

Pinpoint от Foursquare

Сервис Foursquare, благодаря которому в языке появился глагол «чекиниться», запускает рекламную платформу Pinpoint, которая будет активно использовать собираемые системой геоданные.

Читать далее Foursquare объявляет о скором запуске рекламной платформы Pinpoint, использующей геоданные сервиса

Наш гендир Алексей Писаревский написал большую колонку для ЦП

Aleksey-640x426

Алексей Писаревский, генеральный директор Mobio, рассказал читателям «Цукерберг Позвонит» об устройстве рынка мобильного трафика в России. Колонка получилась большой, что, с учетом опыта и позиций агентства на рынке, не удивительно. Среди прочего, Алексей рассказывает о:

  • системе myTarget;
  • пабликах в ВК и группах в ОК как источниках мобильного трафика;
  • Google AdWords;
  • Facebook;
  • редиректах и попапах;
  • самостоятельном продвижении vs. работе с performance-агентством.

Читайте колонку «Гендиректор Mobio Алексей Писаревский об устройстве рынка мобильного трафика в России«.

Localytics: рост вовлеченности и удержания в первом квартале 2015

Localytics - рост вовлеченности и удержания в первом квартале 2015

Компания Localytics выпустила очередной отчет App Stickiness Index Q1 2015, отражающий степень «прилипчивости» приложений в 1-м квартале 2015 года. Индекс – среднее вовлеченности и удержания – поставил новый рекорд: 26%.

Читать далее Localytics: рост вовлеченности и удержания в первом квартале 2015